A Soft Hierarchical Algorithm for the Clustering of Multiple Bioactive Chemical Compounds
نویسندگان
چکیده
Most of the clustering methods used in the clustering of chemical structures such as Ward’s, Group Average, Kmeans and Jarvis-Patrick, are known as hard or crisp as they partition a dataset into strictly disjoint subsets; and thus are not suitable for the clustering of chemical structures exhibiting more than one activity. Although, fuzzy clustering algorithms such as fuzzy cmeans provides an inherent mechanism for the clustering of overlapping structures (objects) but this potential of the fuzzy methods which comes from its fuzzy membership functions have not been utilized effectively. In this work a fuzzy hierarchical algorithm is developed which provides a mechanism not only to benefit from the fuzzy clustering process but also to get advantage of the multiple membership function of the fuzzy clustering. The algorithm divides each and every cluster, if its size is larger than a pre-determined threshold, into two sub clusters based on the membership values of each structure. A structure is assigned to one or both the clusters if its membership value is very high or very similar respectively. The performance of the algorithm is evaluated on two bench mark datasets and a large dataset of compound structures derived from MDL’s MDDR database. The results of the algorithm show significant improvement in comparison to a similar implementation of the hard c-means algorithm.
منابع مشابه
Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملروش نوین خوشهبندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی
Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کامل